

IPFIX – current trends and approaches for secured data transmission

Brussels, Belgium 28. September 2009

Oliver Jung, Carsten Schmoll jung@ftw.at, carsten.schmoll@fokus.fraunhofer.de

28 Sept. 2009, Brussels

Workshop on Future Internet Design

IPFIX fundamentals

- IPFIX = IP Flow Information eXport
 - Standardized by IETF as a predecessor to NetFlow protocol
 - Push-based protocol for exporting IP flow related information
 - Very flexible due to use of data templates
 - Transport protocol can be SCTP, TCP, UDP
 - Data Model defines many std. fields; allows extension to own information elements too
 - http://www.ietf.org/html.charters/ipfixcharter.html

IPFIX reference model

 Various possible scenarios that can exist in an IPFIX system (EP:CP = 1:1, n:1, 1:n)

IPFIX working group standards

- IPFIX working group defined (among others):
 - Architecture for IP Flow Information Export (RFC 5470)
 - Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of IP Traffic Flow Information (RFC 5101)
 - Information Model for IP Flow Information Export (RFC 5102)
 - Guidelines on implementation (RFC 5153), on testing (RFC 5471), reducing redundancy (RFC 5473), and exporting type information (RFC 5610)

IPFIX threats

- Disclosure of IP flow information data
 IPFIX flow records can contain Personal Identifiable Information (PII)
 - PII should be kept confidential parties (exporting process and colleting process)
 - Observation of IPFIX flow records gives an attacker information about
 - active flows in the network,
 - communication endpoints and traffic patterns
 - IPFIX records can also reveal critical information about network infrastructure -> exploitable for future attacks

IPFIX threats

- Flooding attack against collecting process

 CP is always listening for flow records to
 arrive data and thus can be flooded
- IPFIX state exhaustion: creation of too many observation domains, templates, etc.
- IPFIX parse/fuzzing attacks: sending malformed IPFIX messages

IPFIX security

• Secure data transmission:

- Handled on transport layer by IPSec or TLS
- Both support mutual authentication on Server/Client-level with host keys and assigned certificates
- This secures the data on the way between IPFIX Exporting Process and IPFIX Collecting Process – but not further
- What if collected data is to be stored and evaluated only later?

Security approaches

• Option 1:

Use encrypted database filled by IPFIX Collecting process (CP)

• Option 2:

- Send already encrypted data over IPFIX and decrypt only later on real use of the data
- In the PRISM project we follow the second approach – advantages:
 - Easier to use different encryption keys per CP
 - The Exporting process can decide when to make the data decryptable at all by sending the key material

PRISM architecture

Technical realisation

- Send blobs of binary encrypted data via IPFIX to CP inside a new Information Element (IE) "encrypted data block,
 - CP may store these blobs in a database or in a file (c.f. upcoming IPFIX file standard)
 - If key material is available then decryption can take place
 - Our recommendation is to format the data inside the encrypted blobs as IPFIX records!
 - That way decrypted material can be handled also by an IPFIX CP

IPFIX encryption keys

- Transport of the key material can also be done inline via IPFIX with a separate IE "key share"
 - Key shares are protected by the TLS transport
 - The CP can reassemble key material by itself,
 - decrypt selected data blocks and decode them
- The PRISM project will implement, test and benchmark such a system
- Applications will involve use for – IDS, data retention, and others.

Key share threats and vulnerabilities

- Flow records are protected from unauthorized access on the backend
- Attacks against encrypted traces (key recovery, traffic analysis,...)
- Key shares are only provided in case of a suspicious event
- Insider attack on key share is possible:
 - Attacker injects bogus IP packets with suspicious event characteristics
 - Front end can not distinguish between bogus packets and "proper" attack packets

Securing the IPFIX environment

- For safeguarding the PRISM environment including the IPFIX exporting and collecting process it is
 - recommended to protect the whole domain by firewalls on the IP+port level,
 - secure the EP and CP by X.509-based certificates (mandated in RFC 5153),
 - and allow access to the involved machines only to authorized personnel (minimum: user/password, better certificate-based access only)

Next steps

- A comprehensive security assessment is currently performed for the PRISM system
- System improvements will be considered if necessary
- Results including the potential identification of vulnerabilities will be part of the upcoming deliverable D2.3.2

Thanks for your interest!

Questions?