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Abstract: 
The PRISM project introduces a novel design for network traffic monitoring applications. 
Traditional network monitoring applications use a “gather first, process later” operation. In 
this case, data protection and data reduction are static mechanisms generally applied in a one-
off fashion regardless of the specific intent behind the monitoring process. Instead, PRISM 
moves traffic analysis and data reduction to the edge of the measurement system where 
possible, and replaces general techniques with specific analyses targeted toward specific tasks. 
This approach allows aggressive data reduction and protection for scalability as well as 
privacy protection, and provides technical enforcement of the proportionality principle of 
privacy preservation.  
 
This deliverable is the intermediate output of the work carried out in the project work-package 
WP3.2. This work package explores the application of the PRISM design to real world 
monitoring applications, the technical monitoring processing possibilities that can be 
performed “on-the-fly” on a front-end device, the partition of  monitoring applications into 
front-end and back-end parts, and advantages in terms of scalability and privacy preservation 
of the monitoring process as a whole. In this first phase of the project the effort has been 
mainly dedicated to addressing technical solutions to partition application processing to front-
end, back-end, or external components consuming PRISM-protected data. This deliverable 
further documents some preliminary insights and approaches concerning concrete monitoring 
scenarios, as an anticipation of solutions that will be further explored and presented in full 
details in the next deliverable D.3.2.3. 
 

 

Keyword list:  PRISM, IST-2007-215350, Monitoring Applications, lightweight 
processing mechanisms, Bloom filters, embedded processing. 
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1 Introduction 
Network operators currently use a wide range of popular applications to cover their specific 
network monitoring needs. Ensuring the acceptance of a privacy-aware network monitoring 
system requires proper integration with these applications and/or implementation of their 
interfaces. 
 
The monitoring applications as surveyed and described in D3.2.1 range from very specific 
special-purpose monitoring tools to very generic frameworks. An example of the former type 
is PasTmon, which focuses solely on measuring application response times; while on the other 
hand TSTAT produces widely varied kinds of performance statistics, as well as providing 
detection of the traffic patterns generated by specific end-user applications. The potential 
privacy risk of these general-purpose applications indicates the need for finer-grained access 
control, from per-application access to all traffic data to specific, per-purpose access control. 
PRISM provides this control. 
 
As specified in D2.2.1, the PRISM architecture allows the flexible integration of monitoring 
applications to meet varying network monitoring requirements. They can be split and 
distributed among the front-end (FE) and the back-end (BE); components may also be 
external to the PRISM system itself. Depending on privacy and performance requirements, 
this distribution is evaluated for each different monitoring purpose and application as 
presented in this deliverable. The deployment of existing tools fed with only limited 
information, the result of data reduction and protection within the PRISM architecture, 
suffices for most monitoring purposes. For other purposes not possible with mere data 
reduction techniques, functionality and interfaces must be re-implemented within the PRISM 
system as a split of analysis functions between the front-end and the back-end. Therefore, here 
we describe the deployment of existing network monitoring applications with only limited 
loss of functionality, but improved privacy and performance, by combining them with the 
PRISM system. 
 
The contents of the deliverable are structured as follows. Section 2 provides the general 
approach for the adaptation of the monitoring applications for the PRISM system. It describes 
the two-stage monitoring processing design and its implications in terms of tailored output of 
the first stage processing to the specific needs and purpose of the monitoring applications, and 
the consequent possibility to provide a controlled, minimisedd, and privacy-safe output 
devised to guarantee that the back-end monitoring application will receive only the absolutely 
necessary data, thus technically enforcing the proportionality principle behind privacy 
preservation. Section 3 details significant technical advances in front-end processing, 
describing various possible deployments of Bloom filters and their extensions, and thus shows 
that significant front-end analysis work can be provided even on devices which must operate 
in real time with data captured off the wire and with severe memory and state representation 
constraints. Section 4 covers several components which are required for the back-end 
implementation and defines a basic workflow specification language for the data 
transformation. Section 5 presents several example scenarios from the contexts of IDS, billing 
non-repudiation, application detection and trace publication. The deliverable is concluded by 
Section 6. 
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2 Adaptation of monitoring applications 
2.1 Motivation 
Every monitoring application is used for one or more monitoring purposes. This can range 
from detection and forensic examination of a complex network intrusion event, to the shaping 
of network traffic, to the measurement of traffic flows for future capacity planning, and so on. 
Each of these applications is in turn composed of a set of elementary monitoring tasks. In the 
case of network intrusion detection, for example, these tasks may include the detection of 
scanning behaviour indicative of reconnaissance or the matching of a specific part of a packet 
against a pattern in an intrusion detection signature. Likewise, in the case of traffic shaping, 
tasks may include generating a baseline traffic profile and measuring flow or flow set volumes 
against that profile. 
 
In most cases, these elementary tasks are centrally executed by what we call a “monolithic” 
monitoring application. These applications follow a traditional “gather first, process later” 
network monitoring paradigm, where data are collected by traffic capture devices which are 
typically agnostic of the monitoring application itself. All the monitoring processing 
intelligence is delegated to the monitoring application’s operation, which is fed with the 
captured data and is devised to extract, from such data, information which is relevant for the 
specific monitoring purpose.  
 
This traditional approach to network monitoring brings about two fundamental and intrinsic 
flaws.  
 
On one hand, current techniques work at the expense of the users’ privacy, by allowing the 
monitoring activity to pry into each packet’s internals. Privacy is acknowledged by European 
legislation as a fundamental right of the individual [EU00, EU95]. Although anonymisation 
mechanisms can alleviate the issue, they cannot effectively support a usage model that 
balances privacy and utility: they can either offer very good privacy guarantees (e.g. robust to 
modern traffic analysis and classification techniques, indeed extremely powerful in extracting 
potentially sensitive information from as little as basic and non-attributable flow statistics 
such is packet sizes and correlation of inter-arrival times - see e.g. [HIN02, BIS05, CRO06]), 
but producing in this case monitoring data that is practically useless, or they can provide good 
monitoring data, but at the price of ephemeral privacy protection. For instance, the reader is 
referred to the analysis of anonymisation mechanisms carried out in [D3.1.2], which shows 
how commonly employed approaches (such as statically mapping IP addresses one-to-one to 
an anonymised identifier) are vulnerable to de-anonymisation. 
 
On the other hand, the traffic volumes in Internet, like many other things, tend to obey 
exponential growth [ELD99, COF01]. In particular, the link capacity doubles every 12 months 
[COF01], while the router switching capacity doubles only every 16 months (cf. [SUN02]), 
and the original Moore’s law ([MOO65]) predicts that the number of transistors in integrated 
circuits doubles every two years. These observations strongly suggest that the computational 
burden a traffic monitoring system faces tends to increase faster than the processing capacity. 
Indeed, the sheer size of network traces is rapidly becoming a major obstacle to advances in 
network monitoring. This issue was loudly raised almost 10 years ago by one of the fathers of 
the Internet, Van Jacobson1: “If we're keeping per-flow state, we have a scaling problem, and 
we'll be tracking millions of ants to track a few elephants”. Current approaches to data 

 
1 Van Jacobson, End-to-end Research meeting, June 2000; quote reported in C. Estan, G. Varghese, “New Directions in 
Traffic Measurement and Accounting”, SIGCOMM 2002. 
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reduction face yet another conflict, opposing trace size to utility: the more effective the data 
reduction mechanism, the less successful the monitoring activity. 
 
We believe that these two flaws cannot be thoroughly addressed if we remain stuck to the 
vision of data protection and data reduction mechanisms as static, one-for-all, mechanisms 
applied in an on-off fashion regardless of the specific intent behind the monitoring process. 
The point is that the data “necessary” for a given monitoring application does strongly depend 
on the goal of the monitoring task itself. Many network security applications, for example, 
could eliminate known-good or probably-good traffic from the set of flows subject to greater 
scrutiny, and perform subsequent analysis only on the latter. Similarly, performance 
monitoring applications might significantly restrict the analysis of the data to summarised and 
strongly anonymised header-related statistics (the type and amount of such an information and 
anonymisation mechanism being widely dependent on the considered performance monitoring 
application), data which would instead be completely useless for network security purposes. 
 

2.2 Two-stage monitoring system design 
PRISM proposes to face the above discussed dichotomies through the rethink of monitoring 
applications as composed of two coupled stages (see a wider discussion in the architecture 
deliverable D2.2.1). The idea is in principle very simple. Monitoring applications should be 
split in two parts: 

1) A first, front-end, part, is devised to collect, filter, and pre-process only the data 
strictly necessary for performing a specific monitoring task;  

2)  A second, back-end, part, is devised to perform the actual monitoring task, but its 
operation is restricted to process such a subset of pre-filtered and/or transformed data. 

 
Goal of the specific processing performed by the front-end monitoring stage is to tailor the 
output to each specific monitoring application running at the back-end. In this operation, the 
front-end monitoring stage should be designed to provide a controlled, minimisedd, and 
privacy-safe output specifically tailored to the needs of a monitoring application running at 
the back-end, and hence guarantee that the back-end monitoring application will receive only 
the absolutely necessary data, thus technically enforcing the proportionality principle behind 
privacy preservation. 
 
Such a coupled two-stage approach to measurement, consisting in the split of the monitoring 
activity between a front-end and a back-end in a tightly integrated fashion, promises to 
simultaneously address these two fundamental privacy and scalability issues. The pre-
processing done at the front-end stage may significantly reduce the amount of information to 
be delivered to the back-end stage; in the same time the selection of the specific analysis tasks 
to be performed on the front-end stage is not done once for all. Rather, it is customised for the 
specific back-end monitoring application considered, so as to ensure that this reduction causes 
the proper data to be retained for further processing and the applied protection mechanisms do 
not cause a reduced utility of the monitoring operation (the reader is referred to the deliverable 
D2.2.1 for a description of the underlying authorization framework necessary to enforce the 
above described operation). 
 
In summary, the front-end part of the monitoring application is responsible for three classes of 
operation on the observed traffic: 

• isolation of relevant flows from the set of all traffic flows; 
• extraction of relevant information from the observed traffic and elimination of 

irrelevant information. 
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• protection of remaining information (possibly in a time-varying manner in dependence 
of the outcome of the front-end monitoring process – see related discussion and 
proposed solutions in the deliverable D3.1.2) to prevent the processing of the 
remaining data in a way inconsistent with the privacy of the end-users. 

 
Note that this approach requires applications to be composed of analyses; each analysis is in 
turn split into cooperating front-end and back-end analysis functions.  
 

2.3 Where and how to partition monitoring applications 
The discussion above presumes that the front-end and the back-end part of a monitoring 
application coincide directly with the front-end and back-end components of the PRISM 
architecture.  
 
Indeed, this is the most challenging issue from a technical point of view, and the feasibility of 
moving analysis to the front-end edge will be object of thorough investigation in the next 
section. There we investigate the limits of processing capabilities on the front-end, which is 
resource-constrained and must process packets as they arrive at wire speed. We show that 
approaches based on lightweight hash-based data structures, such as Bloom filters and 
elaborations there on, can perform non trivial analysis functions (such as a variation detection 
primitive, applicable to scan detection, see section 3.3.2). 
 
Partition also affects system operation at the back-end. Front-loading analysis has the effect of 
easing privacy preservation as well as scalability improvements due to significant data 
reduction. The back-end components of a partitioned application are responsible for verifying 
that the necessary information for the monitoring application can be passed on to the 
monitoring application without any threat of end-user privacy violation, and for further 
processing the information through back-end analysis functions devised to provide a privacy-
safe output as necessary. Note that these back-end analysis functions can be made extremely 
effective as they may access sensible data, or logged information which, if disclosed, would 
result in a potential privacy violation. But privacy preservation can also be achieved by 
providing tight control over the data passed on to an external monitoring application.  
 
In other words, we address the above mentioned dichotomy by reducing data as early as 
possible and preserving the ability to operate over critical data following the principle of least 
access. Back-end analysis functions implemented as “embedded processing components” 
mediate access to potentially sensitive data. Their operation is grounded on the concept of 
“data transformations”, in the sense that the back-end receives data from the front-end and 
releases data to the monitoring application; its job is to generate the final data set from the 
former. This data transformations operation is tightly related to the privacy-aware access 
control mechanism of PRISM. In fact, access control and data transformations are specified in 
an integrated way, since access control in PRISM as described in [D3.1.2] described the 
necessary internal processing steps for the production of those data that are to be delivered to 
the monitoring application based on parameters such as the role of the requesting entity and 
the underlying purpose. 
 
Subsequently to a monitoring application data request, the back-end executes a sequence of 
analysis functions that will provide the application with the necessary and proportional data. 
The sequence of analysis functions called by the back-end is not static, but rather dependant 
on the “privacy context” of the particular request. Its static part, (i.e., steps that are executed in 
any case) are specified by the PPC in an “offline” manner and provided to the back-end by 
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means of attribute certificates, while the dynamic part of the analysis functions execution is 
determined online by the back-end itself which evaluates the underlying conditions. The result 
is a formally defined sequence of executions, which takes the form of a Data Transformation 
Workflow Specification Language. This constitutes a proprietary workflow language for the 
formal specification and synchronisation of the back-end analysis functions. 
 

2.4 Actual back-end monitoring application’s adaptation 
The acceptance of PRISM will strongly depend on the possibility to use existing legacy 
monitoring applications. It is a central requirement that PRISM is able to work with such 
widespread used applications. For sure developing a monitoring application from scratch 
taking into account privacy by using the PRISM architecture will lead to a flexible and 
comfortable application. A detailed example of such application can be found in Section 5.1.2.  
When designing the PRISM system it was also taken into account to operate legacy 
monitoring applications in a privacy preserving environment. The adaptation of the 
applications should be reduced to a minimum. Especially the end user interface should be 
untouched, because operators are used to it, and they are often perfectly suited for the needs of 
the operator. The idea to operate such application in a privacy preserving environment is 
simply to reduce their input to an amount where no privacy sensible information is present. 
The PRISM system can be used reduce, adapt and anonymise the content of packets fields. 
Such operations for example could be: 

• Forward only packets of a specific source IP 
• Anonymise the IP addresses 
• Delete the payload and generate a random one 
• Random inter packet arrival time 
• Forward only packets where content matches a pre-defined string 

The back-end will transform the information from the packets together with random values to 
the input format of the legacy application. Consequently there is no need for any coding 
within the application itself. PRISM thus allows that the legacy application can generate the 
results for specific monitoring purpose and ensures user privacy by processing the information 
sent to the application. This ensures high acceptance of the PRISM system as the needed 
adaptation work for an application will be reduced to a minimum. 
 
An example can be found in Section 5.3.2 where the Skype detection engine of TSTAT is 
brought to a privacy preserving environment. Nowadays this application operates on the full 
packet stream where privacy information is present. By the usage of the PRISM system the 
application will only receive payload encrypted packets where the IP addresses are 
anonymised. Consequently no privacy information is given to the application. 
 
In an unlikely case where it is necessary that the full packet stream is analysed for a specific 
monitoring purpose the application has to be brought into the PRISM system. An example 
therefore can be found in Section 5.1.1. 
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3 Partitioning functionality between FE and BE 
The front-end as described in section 2.1 is devised not only to capture packets but also to 
provide effective and scalable means to perform packet analysis, flow isolation, extraction and 
flow protection functions.  
 
Goal of this section it to address techniques and algorithms that will be implemented in the 
front-end in order to both i) reduce the information necessary for a monitoring application 
from a potentially very large volume of data, and ii) provide processing functionalities which 
can be used as input and guidance for per-flow cryptographic protection functions. 
 
Concerning issue (i), we recall that reducing the amount of data to process and focusing the 
data processing on what is really meaningful is in itself a fundamental requirement before 
considering privacy issues, solely in terms of performance and scalability issues. Privacy 
requirements merely strengthen the need to focus data collection and processing activities on a 
subset of the observable data, namely that which is strictly necessary to perform a specific 
monitoring task.  
 
Concerning issue (ii), we recall that, in the frame of the separate work-package WP3.1 
dedicated to data protection mechanisms, we have proposed (see section 3.1 of the deliverable 
D3.1.2 [D3.1.2]) a novel approach based on the idea to apply cryptographic data protection 
mechanisms which do depend on monitoring state information, this being in turns 
determined through the operation of front-end traffic analysis functions. 
 
In this section we discuss how to implement effective and non trivial on-the-fly packet and 
traffic analysis functions over the front-end data capture device, through the usage of ultra-
fast, lightweight and memory-efficient data structures. The rest of this section is organised as 
follows. In section 3.1 we present the problems of implementing monitoring activities in the 
front-end together with a short review of Bloom filter data structure [BLO70], since i) they 
represent a promising approach for the implementation of packet processing and inspection 
functions directly in the front-end and ii) most of the novel analysis functions described next 
are based on extensions of Bloom Filters and Counting Bloom Filters. In Section 3.2 we 
address the issue on how to technically improve the design of Bloom filters, and therefore also 
some related extensions, to achieve greater efficiency and memory preservation. Three new 
designs (Multi-Layer Compressed Counting Bloom Filters, Blooming Trees, and Optimised 
Blooming Trees) are proposed. Finally in section 3.3 we present innovative analysis functions 
which take advantage of Bloom-based filtering techniques, and which show that non trivial 
analysis tasks, including deep packet inspection, rate monitoring, variation detection and 
continuous time scan detection, can be effectively deployed over front-end devices.  
 

3.1 Front-end processing techniques 
The development of a front-end stage that plays an active role in the overall monitoring 
process increases the burden on the front-end system, and therefore requires the adoption of a 
novel design leveraging all the capabilities of the available hardware. Indeed, in order to 
accomplish operations like capturing, classification, anomaly detection, flow discrimination 
and isolation at wire speed, a detailed knowledge of the hardware capabilities/bottlenecks, as 
well as the fine grained analysis of the available time budget for each micro-operation 
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involved are required. Here we explore the applicability of one particular class of dedicated 
hardware, a network processor such as the Intel IXP2350 2.  
 
Since most front-end analysis functions do comparatively simple operations on comparatively 
large amounts of data (potentially, every octet of every packet observed), we must consider 
the impact of memory latency on performance. Indeed, the processing unit may spend more 
time waiting for memory transactions to be completed than actually processing the data. Even 
if such latencies can be partially hidden by multithreading, they can still significantly limit 
maximum performance. In particular, in programmable devices, the amount of memory is 
hierarchically divided into four categories: 

• very small but very fast local memory;  
• small and fast on-chip cache (SRAM); 
• larger and slower off-chip cache (SRAM); 
• very large and very slow off-chip system memory (DRAM). 

Time-critical operations must then in most cases involve the use of the first two categories of 
memories only; unfortunately, they turn out to be the most expensive and very limited in size. 
To give an idea of the different performance of memories, one may consider that in an 
IXP2350, a single read/write operation in local memory takes 2 clock cycles while an access 
to the large and inexpensive off-chip DRAM takes 180 clock cycles. 
 
The attempt to devise effective solutions to be integrated into a high-performance front-end 
stage must then pursue the investigation of stateless and memory saving approaches in that 
they tightly reflect into faster operations. In this scenario, a very promising approach towards 
packet processing and inspection is based on Bloom filters [BLO70] and their variations. 
Bloom filters are compact and fast data structures for approximated set--membership query 
and their popularity is rapidly increasing because of their very limited memory requirements 
(roughly speaking, they implement the principle of  `”trading certainty for time/space”.3). A 
Bloom filter represents a set of n elements by using a bitmap of m elements. Each element of 
the set is mapped to k elements of the bitmap whose position is given by the result of k hash 
functions. To check whether an element belongs to the set one just needs to evaluate the k 
hash functions and verify if the corresponding bits of the bitmap are all set. Naturally, the 
filter allows for false positives, in that the hash functions of different elements may collide. 
Nevertheless, a proper choice of both the length of the bitmap and the number of hash 
functions minimiseds the probability of false negative. However, Bloom filters may not be 
used for sets whose elements may change over time, since elements cannot be properly 
deleted from the bitmap. 
 
A Bloom filter may be extended by replacing the bits of the bitmap with multibit counters (or 
bins), resulting in a counting Bloom filter. This extension allows straightforward insertion and 
deletion of elements is by incrementing or decrementing the value of the counter.  
The use of counting Bloom filters for statistical data processing is extremely flexible, although 
the fixed size of bins unnecessarily wastes memory in many cases. A significant improvement 
can be obtained by allowing dynamic bin sizing, bin compression, and multi-layering. These 
modifications appear promising for their actual application to the data processing performed 
by the PRISM front-end. For example, consider a set of rules to be checked by the front-end 
classifier: a counting Bloom filter can easily be used to represent the set. In order to verify 
whether a packet obeys one of the rules of the set, a simple lookup operation consists of 
evaluating k hash functions and checking if the values of bins are all non-zeros. If the result is 

 
2 see http://www.intel.com/design/network/products/npfamily/ixp2350.htm 
3 G. Varghese, Network Algorithmics, 2005, Morgan Kaufmann 
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positive one may deduce that with a small error probability the packet actually satisfies the 
rule and can be delivered to the second stage (back-end) for further analysis.  
 
Several other methods and tool for fast and stateless analysis of high rate traffic have been 
proposed in the literature. In particular, one of the most deeply investigated problems is the 
approximate evaluation of traffic volume associated with the largest flows on a given link (the 
so-called elephants or heavy hitters). This involves accounting for packets belonging to such 
flows only, while discarding information associated to the other packets. To this end, one of 
the most popular solutions is sampled NetFlow, which simply enhances Cisco’s NetFlow 
measurement framework by sampling packets at a rate that can be defined by the network 
administrator, thus significantly reducing the amount of data to be processed. Of course, flow 
sizes are estimated, and small flows can pass undetected using this approach.  
 
Several enhancements to Sampled NetFlow have been proposed, such as the so-called 
Adaptive NetFlow scheme [VAR04] and the multistage filter [VAR02] scheme. Adaptive 
NetFlow overcomes many of the limitations of Sampled NetFlow, such as the impossibility of 
effectively counting the total number of flows. On the other hand, multistage filtering takes 
advantage of a Bloom filter-like data structure, composed by an array of counters selected 
based on a set of hash functions evaluated over each packet. When all of the counters 
associated to a given flow are over a selected threshold, the flow is classified as “large” and a 
record for it is created. A different architecture for counting the number of packets per flow 
has been proposed by Ramabhadran and Varghese [RAM03]. This scheme based on two 
layers of counters: a first layer kept in a fast cache and updated for each packet received, and a 
second larger layer stored in DRAM and periodically updated based on the content of the first 
layer. 
 
One of the most difficult problems in traffic accounting is the necessity of keeping a very 
large set of counters in a large and therefore comparatively slow memory block, thus 
significantly affecting the performance of the whole system. The general approach to 
addressing this issue is to reduce the memory occupation of the set of counters. For example, 
counter braids [MON08] exploit the redundancy associated with the most significant bits of 
the counters, while space-code Bloom filters [WAN04] implement a multiple-resolution 
probabilistic counting scheme. 
 

3.2 Technical advances in front-end processing 
While Bloom filters provide a stateless and quickly accessible data structure for traffic 
analysis and classification that can profitably be implemented within the FE stage, in the 
presence of sets containing a very large number of items, their dimension can exceed that of 
the fast memory caches provided by the network processing architecture; as a consequence, 
such data structures should be moved into slower memory blocks, thus significantly reducing 
the achievable performance. In order to deal with this problem, Bloom filter compression 
schemes which properly exploit a multi-stage memory hierarchy are needed. 

3.2.1 Multi-Layer Compressed Counting Bloom-Filters 
A multi-layer compressed counting Bloom filter (ML-CCBF) [FIC08a] is a counting Bloom 
filter that reduces the memory requirements and the complexity of lookup. The basic idea is to 
explode the counting Bloom filter along another dimension, hence creating a multilayer 
structure, and to use Huffman coding (where a number σ is encoded by σ consecutive ones 
and a trailing zero), which is the minimum redundancy coding for independent and small 
symbols such as the bins of a counting Bloom filter. The construction of an ML-CCBF 
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provides a stack of bitmaps (L0…LN), where the first layer L0 is a standard Bloom filter. The 
other layers are built and modified dynamically as needed. The layer Li contains the i-th 
binary digit of each of the Huffman encoded counters.  
 
Let popcount(u) be the number of 1s in the bitmap (0...u-1); the j-th bit of layer Li belongs to 
the counter whose popcount on Li-1 is equal to j. Due to such properties, the set membership 
lookup can be performed by simply examining the first layer, which can be kept in fast 
memory. Figure 1 shows an example of a ML-CCBF. In the example, we are counting a bin c 
for symbol σ. The bin at layer 0 is pointed by the hash function h(σ). The number of ones 
before h(σ) is computed (i.e. popcount(h(σ)) = 5) and used as index for layer 1. The procedure 
is repeated until we find a ”0” digit (that is the end of the code). Therefore the resulting 
Huffman code for the counter c is 1110, which corresponds to the value 3. 
 
 

 
Figure 1: Example of the basic mechanism of MLCCBF 

 
Complexity and properties 
 
One of the most significant advantages of our algorithm is that it is an extension of a standard 
Bloom filter. Thus, the lookup is as simple and fast as in any Bloom filter, as we need to 
check only bits at layer 0. Therefore, the lookup complexity is O(1). Instead, for insertion and 
deletion we need to explore different layers in the structure. We refer to mi as the number of 
bits in layer i. The size of layer i can be obtained as: 
 

)(0 icPmmi ≥=  
 
Since jumping one layer up requires a popcount on a potentially large number of bits, we 
divide all layers in blocks of the same bit-size D and add a table for each level. When 
computing popcount(uj) at layer j, the first log2(mj/D) bits of uj are used as index to table j. 
Each entry of the table represents the number of ones preceding the start of the block. Thus, if 
W is the number of bits in a word, the actual popcount operation works only on less than D/W 
words. Therefore, the average cost of a popcount is 1 + D/(2W). 
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Both insertion and deletion procedures in an ML-CCBF require, for all k bins, the complete 
lookup of multiplicity (by exploring a certain amount of layers), a shift by one position and 
the update of the last explored table. Such an update consists simply of an increment or a 
decrement on a limited number of entries. Therefore the average amount of operations for 
insertion and deletion is given by: 
 

)2)2/(1]([{ ++= WDcEkω  
 
Once again, E[c] ≈ln2, thus the average sum of operations is fixed and the complexity for 
insertion/deletion is O(1). 
 
Size 
 
The use of an ML-CCBF results in a lower memory requirement: 
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where TSi is the size of the table required for layer i, which requires ni = mi/D entries of size 
log2(mi), thus resulting in: 
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The average amount of required memory is therefore: 
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Figure 2 shows the comparison among the sizes of an ML-CCBF, a standard counting Bloom 
filter, and the minimum amount of bits for independent symbols (BF entropy = m*entropy), 
for k = 10 and m = 32768. The memory saving of our method is clear as it approaches the 
minimum value. Note that the optimal number of elements n = 2270 that minimises f, 
minimises the distance from the BF entropy as well. 
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Figure 2: Size comparison among ML-CCBF, CBF and m*Entropy 

3.2.2 Blooming trees 
Blooming Trees are novel data structures similar to counting Bloom filters which allow the 
tuning of the false positive and overflow probabilities. The structure is allocated in different 
layers, thus exploiting the built-in memory hierarchy of many packet processing systems. The 
idea of Blooming Trees [FIC08b] is constructing a binary tree upon each element of a plain 
Bloom Filter, thus creating a multilayered structure where each layer represents a different 
depth-level of tree nodes. The aim is to achieve both low false positive probability and low 
memory requirements, for increased time for lookup. The latter can be mitigated by the low 
memory consumption enabling the deployment of the structure in faster on-chip memories. 
 
To build a naive Blooming Tree (NBT) for n elements, L+2 layers are defined: 

• a plain Bloom Filter (B0) with k0 hash functions hj (j = 1…k0) and m bins such that 
m=nk0=ln 2; 

• L layers (B1…BL), each composed by mi (i = 1…L) blocks of 2b bits; 
• a final layer (BL+1) composed by c-bits counters. 

The j-th hash function hj provides a log2m + L b bit long output: the first group (s0;j ) of log2m 
bits is used to address the BF at layer 0, the other Lb bits are divided into L substrings 
(s1;j…sL;j) of b bits, one for each layer. 
Let popcount(B[u]) be the number of ones in the bitmap B[0]…B[u-1] and let us consider the 
simplest case b = 1 (this way, blocks become couples and substrings si;j collapse into single 
bits). The lookup for an element σ consists of a check on k0 elements in the BF and an 
exploration of the corresponding k0 “branches” of the Blooming Tree. We jump from layer i 
to layer i + 1 by: 

• computing a popcount on layer i, that gives us the index of the couple to be observed 
in the layer i + 1; 

• checking the bit expressed by si;j : if si;j is equal to 0, we check the first bit of the 
couple, otherwise the second; 

• processing the bit of the couple: if it is 0, then σ is not in the set and the lookup result 
is NOT FOUND, otherwise the overall process must be iterated for the next layers. 

An example (with k0 = 1) of the lookup process is shown in Figure 3, where the tree structure 
of NBT is clear. For instance, let us observe the last bit of the BF, where two items collide. 
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The popcount (equal to 3) leads to the proper block of layer B1. The bit s1 of the hash is equal 
to 0 for both the items, so the first bit of couple is set. Then, the items present a different s2 bit 
of the hash and they split: in the fourth couple of layer B2 (as indicated by the popcount on B1) 
both the bits are set. Therefore two different bins in B3 count the two items. 

 
Figure 3: An example of a Naive Blooming Tree with b = 1. 

 

3.2.3 Optimised Blooming Tree (OBT) 
An optimised version of a Blooming Tree can be constructed following three observations 
about naive Blooming Trees: 

• once there are no collisions in a certain block at layer u, there are no collisions also in 
the corresponding blocks in all upper layers u+1…L, but we use 2b(L-u) + c bits for 
those blocks; 

• all blocks always have at least a bit set: a block with 2b zeros (let us call it zero-block) 
has no meaning; 

• looking up w layers yields f = 2-(k0+wb). 
Therefore, whenever there are no collisions in a block, a zero-block can be used to indicate 
this situation and stop the “branch” from growing. But we cannot stop the lookup there, since 
it would increase the probability of a false positive. The solution of the Optimised Blooming 
Tree (OBT) is to add a bitmap and an array of hash substrings for each layer. The array of 
substrings for layer i is composed by all the [(L-i)b]-long hash substrings that complete the 
hash of the “branches” that stop at layer i. In the bitmap (of mi bits), the generic j-th bit is set 
if the j-th block has no collision (i.e. zero-block); this way it can be used to address the 
substring array (see Figure 4). The optimization can be also done at runtime. 
Obviously, operational routines change. As for lookup of an element σ, whenever the xi-th 
block is a zero-block, we compute yi = popcount(bitmapi [xi]) and compare the last (L-i)b bits 
of the hash of σ with the yi-th element in the i-th substring array. This way, the lookup 
becomes faster as zero-blocks are very likely to occur in any layer, thus avoiding all the steps 
required to jump up to layer L+1. 
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Figure 4: An example of an Optimised Blooming Tree with b = 1. 

 
The insertion routine, however, can be slightly slower since it must also be aware of zero-
blocks. If we have no collisions at layer 0, we add a zero-block, we set the corresponding bit 
in the bitmap as well as the corresponding substring in the substring array. Instead, if there is a 
collision, we have to check the colliding elements and create the corresponding branches up to 
the layer (let us say j) where the hash substrings differ. At layer j+1 we repeat the ordinary 
steps: add two zero-blocks, set the corresponding bits in the j-th bitmap and add the two hash 
substrings in the j-th substring array. The computational cost of deletion, in turn, is about the 
same of that of insertion since, again, zero-blocks require additional processing but reduce the 
amount of accesses to upper layer. 

 
Figure 5: Size comparison for NBT, OBT, dlCBF and CBF with n = 2048. 

 
Figure 5 shows that the overall gain in size is evident for optimised Blooming as compared to 
NBT and dlCBF. The d-left CBFs (dlCBFs) [BON06] are simple alternatives based on d-left 
hashing and fingerprints of bins. They do not rely on the principles of Bloom Filters, but they 
offer the same functionalities. The dlCBFs use less space, generally saving a factor of two or 
more for the same fraction of false positives, and the construction is very simple and practical, 
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much like the original Bloom Filter construction. Indeed the simplicity in constructing and 
maintaining data structures is maybe the greatest contribution of [BON06] as compared to 
previous works. Moreover, even dlCBFs have the limitation of potential counters overflow 
and the need for an additional fingerprint for each bin in the data structure. Figure 5 reports 
the size for the above mentioned structures as a function of -log2(f) (where f is the probability 
of false positives) for a number of elements n = 2048. 
 

3.3 Functional advances in front-end processing 

3.3.1 Bloom filters for avoiding Intrusion Detection evasion 
Standard pattern matching techniques for packet inspection and network security can be 
evaded through TCP and IP fragmentation. Therefore, to detect such attacks, classical 
Intrusion Detection Systems must reassembly all packets in a flow before applying matching 
algorithms; keeping reassembly state for each active connection, in turn, requires a huge 
amount of memory and may be unfeasible for a large number of flows at high packet rate 
[VAR08]. 
The use of counting Bloom filters provides an effective solution to this issue by allowing the 
fast detection - at the wire speed - of evasions attempts without any need for packet 
reassembly. The rationale of such an approach relies on the capability of counting Bloom 
filters to quickly update string sets and to deal with partial signatures, as well as to effectively 
count the occurrences of elements. 

 
Figure 6: The anti-evasion system (SubCBF = Substring CBF, StriCBF = String CBF) 

 
This approach splits the strings to be searched for into 3-byte substrings and creates a 
counting Bloom filter (hereafter referred to as a Substring CBF) to represent this set [ANT09]. 
Proper heuristics are used in order to account for strings which are shorter than 3 bytes. Notice 
that this set is easily updatable by inserting and deleting elements with no need to rebuild the 
overall structure. Whenever a substring is detected through the Substring CBF, a bank of 
further filters (hereafter referred to as String CBFs) is properly set for the specific flow: more 
precisely, for each string the detected substring belongs to, a filter, which accounts for the set 
of the remaining characters of the string, is initialised. All the packets of the flow are then 
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processed in search of the remaining part of the string and, whenever a match is found, the 
values of the corresponding String CBFs are decremented.  
Whenever a String CBF is completely reset to zero, the attack is detected and the flow is 
either blocked or rerouted towards the back-end stage of the monitoring system. The complete 
picture of the system is shown in Figure 6. 
Notice that the specific structure of the system itself allows either a full implementation within 
the front-end or a layered implementation where Substring CBFs are located in the front-end 
and the String CBFs in the back-end. Finally, it is worth noticing that, if implemented in the 
back-end, the String CBF stage might even be replaced by any other traditional pattern 
matching systems that operate packet reassembly. 
 

3.3.2 Continuous time scan detection and rate control  
As discussed in section 2.1, the issue of significantly reducing the amount of data to be 
delivered to a back-end monitoring application is a fundamental performance and scalability 
requirement. Privacy further enters into play when we consider that i) data reduction is by 
itself a form of privacy protection, and that ii) this becomes even more true when the data 
reduction is performed on the basis of the actual purpose of the monitoring task.  
 
Indeed, we recall (refer to deliverable D2.1.1, section 4, for a comprehensive discussion of the 
underlying legal and regulatory framework) that a foundational principle behind data 
protection consists in the fact that the personal data that are processed must be adequate, 
relevant and not excessive in relation to the purposes for which they are collected and/or 
further processed. Therefore, if we can implement a technical approach which allows isolating 
the traffic data of monitoring interest from all observable traffic, we would technically enforce 
(!) said foundational regulatory principle. 
 
The techniques described in what follows provide concrete examples on how to do this. In 
particular, based on innovative usage of the Bloom Filter, we have designed two mechanisms 
that allow front-end to perform rate measurements, to identify variations and/or repetitions of 
the values of fields of every protocol header. A proper combination of these two techniques is 
sufficient to identify the flows of interest for a large set of monitoring applications 
(Performance measurement, high rate flows billing, etc.).  
 
Here we provide a complete description of the mentioned mechanisms in the frame of a 
specific application scenario, namely how they can be combined to isolate scanning hosts that 
may require further inspection by a monitoring application. The isolation of scanning 
behaviour is useful to identify propagating worms or attackers trying to achieve information 
regarding possible victims. Worm propagation processes [MOO03], in fact, scan hosts in 
finding targets to spread to, and many attacks are preceded by host or port scans as a 
reconnaissance phase. Furthermore for many monitoring applications such as content-based 
network intrusion detection scan traffic is considered unimportant; for these applications, 
separating scan traffic from non-scan traffic can improve performance by reducing irrelevant 
traffic to be measured. Scanning behaviour is characterised by a high degree of variation with 
respect to a specific parameter or set of parameters for a given network traffic flow within a 
given time window. For example, to detect a horizontal TCP SYN scan of a given subnet, a 
behavioural scanning detector would look for variation in destination IP addresses for each 
given source IP address. In practice for a given reference flow one (or more) specific field of a 
packet (e.g. the destination IP address in the previous example), is checked to determine 
whether it is new within the scope of the flow.  
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3.3.2.1 Basic scanning detection approach and limits 
In prior work [BIS05] proposing a solution for fast anomaly detection based on Bloom Filter, 
the detector is organised into two modules as illustrated in Figure 7.  
 

 
Figure 7: Fast anomaly detection Bloom Filter 

 
The variation detector assigns each packet in the full traffic stream to a specific flow, and 
determines whether the specific field under monitoring has already been seen. If the flow-field 
pair is new, the variation monitor module notes that a new variation has occurred for the 
specific flow and counts it as such. The variation monitor may then signal when the variation 
count for any given flow overflows a predetermined threshold.  
 
Each of these modules is implemented through an efficient data structure based upon a Bloom 
filter. The variation detector is an ordinary Bloom filter storing the set of flow-field pairs. The 
variation monitor is built around a conservative-update [ES02] counting Bloom Filter which 
collectively counts all possible flows, avoiding the need to track variation counts internally for 
each individual flow. The presented solution is limited in its simple treatment of time. Time 
plays a fundamental role for two reasons, and these two reasons lead to the innovative 
mechanisms that we propose to enhance the front-end capacity of isolating flows. The first 
one concerns the state kept by the variation detector. Without some mechanism periodically 
refreshing its filter, this module would begin with no state and gradually fill with flow-field 
pairs. As this happens, the effectiveness of the filter decreases as the false-positive probability 
increases. This opens a potential avenue of attack against the detector; an attacker could blind 
the module by filling up its filter with spurious flow-feature pairs before running an actual 
scan, which may not be detected due to interference from the high false-positive rate. We 
remark that the module filling and the consequent increase of the false positive rate is a 
process linked only with the dimension of the Bloom Filter m and with the number of 
elements to be stored n, and is common to all the types of Bloom Filter (i.e. Counting Bloom 
Filter, Spectral Bloom Filter, etc.). The second one impacts the thresholds used by the 
variation monitor. Given the bursty nature of network traffic in general and scan behaviour in 
particular, one single time window for this module is insufficient; long time windows will 
cause many false positives in the case of a burst in traffic, and furthermore will delay 
reporting of scan behaviour; short time windows will lead to false negatives as lower-
frequency scan behaviour goes undetected. Therefore, an adaptive time window, which 
responds to the profile of measured traffic, is necessary to minimise both false-positives and 
false-negatives. We remark that the problematic highlighted by the scan example affect all the 
possible applicative scenarios where the isolation of the flows interesting for a specific 
monitoring application, requires taking into account the time behaviour of a flow parameter.  
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In order to address these issues we present i) a self-tuning mechanism for detecting variation, 
independent from the number of elements (the flow-feature pairs) that have to be detected but 
that adapts the variation detector to the actual traffic load; ii) the application of a counting 
Bloom filter based implementation of a token bucket [SHE97], for rate measurements. We 
further described how the two stages can be coupled to obtain a mechanism to isolate directly 
in the front-end the flow performing scanning detection.  

3.3.2.2 Definitions 
Hereafter we refer, in the description of the proposed mechanisms, to the following definitions 
of flow, feature, and variation: 
 
Definition of Flow. A Flow is a set of packets which have some common keys or 
characteristics. This is formally stated as follows: if p is a packet travelling over the link, there 
exists a function fi = f(p) which, for each packet p, extracts or computes a bit-string fi , which 
we call a flow label. As such, it is obviously not restricted to the traditional IP 5-tuple 
(source/destination IP address, source/destination port, and protocol. This definition of flow is 
equivalent to that defined by the IETF for IP flow export using IPFIX [CLA08]. Example 
flows conforming to this definition include: all the traffic sent from a given IP subnetwork; all 
the traffic for which the source port is higher than a given threshold; or all the traffic crossing 
a defined border with a specific IP time-to-live.  
 
Definition of Feature. A Feature is information useful within the scope of the detection 
application. In particular a feature could be the number of bytes exchanged within a time 
windows, the source IP address, the destination port, the protocol type, etc. For our scope we 
will consider only features that can be extracted from individual packets. Formally, a feature 
is a function gj = g(p) which associates, to each packet p, a bit-string gj, which we call a 
feature label. For instance, a feature can be the destination IP address or the destination port, 
and the feature labels gj are the actual contents of the considered field.  
 
Definition of Variation. A Variation occurs when a packet in a given flow presents a “new” 
feature label, i.e. not previously seen, within a suitable time scale, in other packets belonging 
to the same flow. A feature of a packet belonging to a given flow is, in fact, extracted and its 
value is recorded for a fixed amount of time. A feature’s value different from the one already 
recorded for a specific flow or not recorded at all is considered a variation. Obviously the 
amount of time a feature’s value is recorded (i.e. the suitable time scale mentioned above) is 
of fundamental importance for the variation identification. If a feature’s value is recorded for 
short time (less then a RTT of a packet) Note that the time scale may be both explicitly and 
precisely set as a monitoring time window T during which the traffic is analysed, or can 
implicitly emerge, as in our approach.  

3.3.2.3 Variation detector 
The variation detector is composed of two Bloom filters operating in parallel. Each filter 
cyclically goes through two subsequent states, “Learning” and “Detecting”, such that at any 
given time one of them is in the Learning state while the other one is in the Detecting state. At 
the end of the cycle, the old Learning filter becomes the new Detecting filter, and the old 
Detecting filter is reset to zero before becoming the new Learning filter, such that as the next 
cycle starts the Learning filter is always empty.  
 
The Detecting filter determines whether a newly arriving flow-feature pair <fi, gj> is a 
variation. It computes the k hash values, and matches them against the relevant bits stored in 
the array; if at least one bit is 0, it adds the flow-feature pair to the filter by setting all the 
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relevant bits of the array to 1, and advertises the flow fi that shows a varying feature. Note that 
to use the described mechanisms to detect repeating flow-feature pair <fi, gj> it is sufficient to 
compute the k hash values for every incoming pair, and matches them against the relevant bits 
stored in the array; if at least one bit is 0, the flow-feature pair is added to the filter by setting 
all the relevant bits of the array to 1, while if all the marched relevant bit stored in the array 
are set to 1, the flow label fi is advertised.  
 
The filter in the Learning state receives the same input < fi , gj >, and updates the filter by 
setting all the relevant bits to 1, with no further action. Separating the variation detector’s 
responsibilities into two parallel Bloom filters achieves two goals. First, it allows the 
Detecting filter to “warm start” by being primed with flows during its time in the Learning 
state. Second, it allows “self-clocking” operation adaptive to the input traffic. Allowing the 
Detecting filter to warm start avoids a problem that would occur if a single Bloom filter were 
periodically reset: at each reset time, any flow-feature pair would be counted as a new 
variation, even if it is not. The variation monitor is self-clocking because the state transition 
between Learning and Detecting does not happen on a pre-specified clock; instead, it is 
dependent on the level of occupancy of the Learning filter, and therefore on the input traffic. 
Recall that, for a Bloom Filter of size m and with k hash functions, the probability that a 
generic bit in the array is equal to 0, given that n elements are stored in the filter is 
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Let now B0(n) be the average number of bits set to 0 given that n elements are stored in the 
filter:  
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For a target n, the Bloom filter’s false-positive probability is minimised if we set k = m/n log 
2. This implies that, with an optimal k, B0 (n) = m/2, and B0 (n/2) = m/√2. The filters are 
dimensioned so that, when completely filled, they are expected to contain at most n distinct 
flow-feature pairs and to perform with a false- positive probability target ψ. The filter size m 
is then readily determined from the well-known relation ψ = 0.6185m/n, which holds for the 
optimal setting of the number k of hash functions. For instance a target 1% false-positive 
probability implies that m ≈ 10n.  
 
A filter is kept in the Learning state until the number of 0s contained in the filter array is 
greater or equal than a given threshold α = m/√2. This implies that, at the end of the 
subsequent Detecting period, the same filter will be filled with a number of elements never 
significantly exceeding the target capacity for which the filter has been sized, and will operate 
with approximately a same number of 0/1 bits. Note that, unlike time-based systems (such as 
for instance [KON06]), the previous considerations hold irrespective of the traffic mix. Peaks 
of variations which abruptly load the variation detector are both detected by the Detection 
filter, and learned by the Learning filter, which implicitly acts as an estimator of the arrival 
traffic and a clock for the state transition of the variation detector). The usage of a fix 
threshold α = m/√2 to decide when we have to swap between the Learning and the Detecting 
filter implies that the Detecting filter will usually contain, a number of 0s lower than B0 (n) = 
m/2. When the traffic is composed by a mix of new and repeating flows, in fact, the Learning 
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filter, since it is initially void, will see as variations also the pairs < fi , gj > belonging to flows 
already active and that are instead identified as repetition by the Detector filter. This implies 
that the Listening filter Lf will reach the threshold alpha when the Detector filter Df will 
contain less then B0 (n) = m/2. In order to improve the performance of the Detector filter it is 
possible to exploit a simple self tuning mechanism that shift the threshold alpha so that when 
the Listening filter become the new Detector filter, the old Detector filter contains B0 (n) = 
m/2. This result can be achieved estimating the number of pairs < fi , gj > that the Listening 
filter see as variations while the Detector filter see as repeating pairs. Defining B0 (Df ) as the 
number of 0s containing in the Detector filter when it is swapped, B0 (Lf ) as the number of 0s 
containing in the Listening filter when it is swapped and r as the number of repeating pairs 
and considering this value as slowly variable across following detection windows, the number 
of bits set to zero, when the Detecting filter is reset, is:  
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while the number of bits set to zero in the Learning filter is:  
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Their ratio allows us to estimate r. In fact  
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From this equation we obtain an estimate for the number of repetition:  
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Exploiting r we can compute a threshold alpha allowing a better exploitation of the Detector 
filter. After having estimated the value of r we can modify the swapping threshold alpha to 
better exploit the Detector filter. Since we want to obtain a number of 0s in the Detector filter 
equals to m/2:  
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we obtain that the Listening filter is swapped according to e new threshold α:  
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the first time we estimate r the threshold α is set to m/√2 and consequently we can obtain r as:  
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while in the following swapping windows r is computed as  
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3.3.2.4 Rate Counter 
Here we propose a design for the rate monitor that operates without pre-established time 
windows in order to support near-continuous operation. This design is based upon counting 
Bloom filters with one fundamental enhancement: the filter content is regularly emptied at a 
given target rate. Consider an ordinary counting Bloom filter with conservative update 
described by the number of counters m and the number of hash functions k. Each counter 
 

]:1[ mb  

 is assumed to use s bits implying a maximum counter value 
82=S . Assume we want to 

detect all the flow presenting a specific repeating or varying rate of some characteristic. Let r 
be the critical long-term average rate per flow we wish to detect, and  
 

rW /1=  
 

the maximum long-term average inter-arrival time between the characteristic object of the rate 
measurement within a flow. W is expected to be a short time interval (on the order of one 
second) compared with the monitoring time T. We enhance this filter as follows: At the end of 
each interval W, all non-zero counters in the filter are decremented by one. This has the effect 
of reducing characteristic count per flow by one every W seconds to a floor of zero, since the 
number of element object of the counting process per flow fi is given by  

 
)])([)],...,([min( 1 ikii fHbfHbc = . 

 
Note that this enhanced counting Bloom filter is an approximation of a common token bucket 
[MAS04] in which each flow fi has at most S − ci tokens before reaching the overflow value 
S. The decrement at the end of each interval W is therefore analogous to assigning every flow 
an extra token. This structure can then be used to detect whether the rate of the characteristic 
for a given flow exceeds the profile of the token bucket, or generally, whether during i time 
intervals W more than S+i−1 repetition or variation (for the characteristic under observation) 
occur for a given flow. This technique adapts to the burstiness in contrast to static detection 
techniques which count variation or repetition overflows per monitoring time T. For example, 
assume r = 1 variation per second, so W = 1 second; and 3-bit counters, so the overflow limit 
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S = 2³ = 8. A flow will be detected as critical if more than 8 variations occur within 1 second, 
more than 9 variations within 2 seconds (e.g. 5 variations per second sustained for two 
seconds), or more than 10 variations within 3 seconds (e.g. 4 variations per second sustained 
over three seconds), and so on. Note that over long time scales, any rate in excess of 1 
variation per second will be detected.  
 

3.3.2.5 Scanning Detector 
The combination of the variation detector module together with the rate counter allows the 
front-end to isolate the flows suspicious of performing scanning activities. Whenever the 
variation detector detects a varying flow-feature pair it advertises the flow label fi to the 
variation monitor for its accounting. The particular design of the rate counter provides the 
ability to detect both short bursts of variations in a timely manner and slower persistent 
scanning behaviour. This approach addresses the drawbacks of a relatively long constant time 
interval T for the variation monitor. 
 

3.3.2.6 Performance evaluation 
We simulated the performance of the basic approach outlined in Section 3.3.2 and comparing 
it with the proposed approach using a single Bloom filter of size m= 65536 bits for the 
variation detector and a counting Bloom filter with m=1024 unbounded buckets and k=4 hash 
functions, with m=256 bits and k=3 hash functions and then with m=1024 bits and k=4 hash 
functions. For sizing the Bloom Filters we set a false positive probability target psi = 0.001 
and use the formula psi = 0.6185^{m/n} to determine n, which is the number of <fi, gj> pairs 
that can be inserted in the Bloom filter respecting the probability target. We obtain m/n= 14,3 
and the optimal number of hash functions k=m/n *log 2 = 9. The variation detector filters use 
k=9 hash functions. Figure 8 and 9 shows the results for the case of 30,000 variations within 
1000 flows. These are subdivided into two classes: ”heavy flows”, which generate a large 
amount of variations, and “light flows”. Figure 8 plots the total variations per flow, the 
number of variations output from the variation detector, and the number of variations counted 
by the variation monitor. The figure shows that the variation detector is the limiting factor in 
the detection performance of the system in this simulation, as the variation detector Bloom 
filter is not properly sized to accommodate 30,000 variations, causing the false-positive count 
to increase as the variation detector fills. Figure 9 plots the total variations per flow, the 
number of variations output from the variation detector, and the number of variations counted 
by the variation monitor.   
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Figure 8: Basic approach 

 
Figure 9: Proposed approach 

 
 
The proposed approach, if the Bloom filters of the Variation Detector are well dimensioned, is 
able to detect variation with the false-positive count that is near zero. 
The state change between Learning and Detecting happen when the number of zeros in the 
Bloom filter in Learning state is m/√2=23170 (see section 3.3.2.2 for theoretical details).As 
shown in Figure 10 the usage of a fix threshold causes a waste of memory in the Detecting 
filter. In particular when the Learning filter reaches the threshold (i.e. green line reaches a 
total length ratio of 0.3), the Detector filter has not reached the m/2 threshold (i.e. the red line 
does not reach the total length ratio of 0.5). In order to solve this problem we have proposed 
the usage of a self-tuning mechanism (Figure 11) that adapts the threshold to avoid memory 
waste (see section 3.3.2.2 for theoretical details).  
 

Figure 10: None adapt. threshold mem. usage 

 
Figure 11: Adaptive threshold memory usage 
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4 Partitioning functionality within the BE 
The PRISM back-end’s monitoring services adaptation amounts to an innovative feature of 
the PRISM system, as far as the deliverance of data to monitoring applications is concerned. 
The intercessional and privacy safeguarding role of the back-end serves for the deliverance of 
pre-processed data, embedding functionalities that limit the risk of privacy impingement. 
Working in contrast to typical systems offering to monitoring applications raw packet data 
that are not really needed for the underlying monitoring purpose, the back-end adapts several 
portions of monitoring tasks in order to provide explicit results of data processing and 
analysis. That is, in the context of the PRISM operation, the back-end undertakes tasks, 
typically executed by the monitoring applications themselves, which concern the 
transformation of the data from their native, raw format to the data types that are actually 
necessary for the production of the final monitoring results.  
Therefore, one of the phases of the back-end’s operational flow during its mediation between 
the front-end and the monitoring application (i.e., the end user of the data) is the one 
concerning the generation of the set of appropriate and proportional data, through the 
execution of a corresponding set of data analysis. The back-end and its distinct components 
constitute the entities responsible for processing raw information derived from the front-end 
and transforming them accordingly, in order to provide them in a useful and a privacy 
preserving format at the requesting party. The computational strength and the depth of the 
processing capabilities of the back-end and its embedded components define the level of the 
aforementioned adaptation.  
 

4.1 Back-end Embedded Processing 
In order to prevent excessive disclosure of data to the monitoring application, part of the 
processing normally performed in the monitoring application itself, is implemented within the 
PRISM back-end. The Embedded Processing Components of the PRISM back-end will 
comprise an affluent library of software tools, for executing and performing the necessary 
actions during the stages of elaboration (basically data transformations ranging from simple to 
advanced). The two important aspects of this concept are, on the one hand, the components 
themselves and, on the other hand, their effective orchestration for achieving the desired 
result. 

4.1.1 Data Transformation Functions 
In order for the BE to produce the derived data types that will be delivered to the monitoring 
application instead of disseminating the actual raw monitoring data, it makes use of several 
analysis functions, the development of which constitutes the ongoing work of the 
workpackage WP 4.2. As anticipated, final results of the processing are handed over to the 
monitoring application. The data transformation functions are organised in the following 
libraries:  

• Anonymisation Library: It contains a variety of anonymisation functions, such as 
explicitly altering fields of packets or randomizing them.     

• Aggregation Library: It enables the production of aggregated data, incorporating 
functions such as mathematic calculations (e.g., sums), data clustering and generation 
of mean values. It can be roughly said that this family of functions implements a 
concept similar to that of statistical databases. 
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• Protocol Headers Library: It consists of different tools, such as IPv4HeaderHandler 
and TCPHeaderHandler, each one of which is applicable when specific information 
must be extracted from or calculated from the value of distinct fields of the respective 
protocol headers. Typically, the functions accept protocol headers as input, while they 
return with the values of specific header fields as output.    

A fundamental concept behind the back-end’s data anomymisation functionality is to rely on a 
general-purpose tool that can anonymise live or stored data on a per-field basis. That is, a data 
transformation strategy can define what function should be applied on each application field. 
In order to additionally provide flexibility in the transformation functionalities engineering, a 
second level of abstraction has been introduced, by means of a lower-level Application 
Programming Interface (API) which is exploited by the Embedded Processing Components 
themselves. This API provides all the elementary transformations, which are then used by the 
higher-level processing components for the enforcement of a data adaptation strategy. 
 

4.1.2 Embedded Processing Components’ execution organization 
The Embedded Processing Components are manipulated and exploited by the Monitoring 
Agents (MA) of the back-end, upon receiving by a monitoring application some request for 
disclosure of any kind of data. Subsequently to a monitoring application request, the serving 
MA executes an explicit sequence of operations for generating the data types that are 
necessary and proportional for the satisfaction of the given request. These operations are 
grounded on the Embedded Processing Components. 
The sequence is specified taking into consideration the incoming CertPDT and CertPDT* 
certificates that any monitoring application user must obtain from the PPC or an equivalent 
delegate and submit together with the request. More specifically, the sequence essentially 
reflects the set of operations that must be performed in order for the data types provided by 
the front-end (defined by the CertPDP*) to be transformed to the ones that should finally be 
disclosed to the monitoring application (defined in the CertPDP). In other words, the result of 
the operational sequence specification is the extraction of a certain guideline schedule that the 
PEP functionality of the back-end is required to follow. This schedule basically resolves the 
matter of eventuating in the deliverance of the requested data, given specific raw material (i.e., 
data originally derived from the front-end).  
In that respect, a possible approach that could be followed would concern the execution by the 
back-end MA of certain algorithms that denote a path of transformations to be tagged along, 
in order to result in the requested data (accounting as the starting point the raw data retrieved 
from the front-end). The necessary information is contained in the PRISM Ontology, of which 
the back-end is aware, in terms of instances of the DataTransformations class that map 
the Embedded Components to source and target data types. 
Nevertheless, as already it has been mentioned [D.3.1.2], the PPC component of the PRISM 
system when it comes to generating and providing certificates that denote the Permitted Data 
Types for a requesting entity, benefits from the execution of precise algorithms that overlap 
the ones mentioned above. More specifically, the PPC has already calculated and followed an 
explicitly defined path of data transformations, in order to map Permitted Data Type (PDT) 
sets with raw Permitted Data Type (PDT*) sets and to eventually generate the relative 
certificates. Hence, taking into consideration the stringent performance requirements of the 
back-end, the execution of the same algorithms for the exact same reason within the latter 
would be an extravagant waste of resources. For this purpose, the result of the Static Policy 
Decision Point (S-PDP) reasoning, taking place at the PPC, should be communicated at the 
back-end.   
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In order to be communicated to the back-end from the PPC, the calculated path of data 
transformations is encapsulated –as an attribute– in the CertPDT certificate. This way, the 
PRISM system evades the burden of a potential additional communication schema between 
the back-end and the PPC. Subsequent to receiving the static reasoning results of the S-PDP, 
the occupied MA particularly its Dynamic Policy Decision Point (D-PDP) functionality needs 
to be instantiated, taking into consideration the indicated workflow and enhancing it. More 
specifically, the validity of certain ad-hoc conditions as well as the unlikely occurrence of 
privacy encroachment events should be examined (for instance, the time and the date of a 
request should be constrained, that is certain employees of an organization should not be 
allowed to receive data on non-working days, or the disclosure of certain data types should be 
prevented when disclosure of others has been performed). The ExclusiveCombinations 
and the Conditions classes, combined with the Rules class, of the PRISM Ontology 
serve towards the aforementioned goal.  

4.2 Data Transformation Workflow Specification Language 
In this context, the need for the formal specification of the actions performed inside the back-
end has emerged. Subsequently, the Data Transformation Workflow Specification Language 
(DTWSL) has been defined and constitutes a light proprietary workflow language in order to 
express the sequential dependencies among a number of tasks to execute. More precisely, the 
DTWSL is the workflow specification language used for the facilitation of the 
acknowledgement of the specified function execution sequence, by the Policy Enforcement 
Point functionality of the back-end MA, in order to conclude to an orchestrated and well 
organised exploitation of the Embedded Processing Components. 
The DTWSL is a particular XML notation representing the inter-task dependencies and 
defines several proprietary elements and attributes that apply to the PRISM back-end 
operational workflow. It must be noted that the DTWSL relies on the PRISM Ontology, which 
is the semantic model of the system; in fact, both the data transformation functions and the 
different data types that PRISM deals with have their semantic representation in the PRISM 
Ontology. In the following, the current specification of the DTWSL is presented.  
 
A DTWSL workflow document is always encapsulated in a <WORKFLOW> element. As far as 
the actions’ conditional structure is taken into account, the following elements are defined: 

• SWITCH: This element enables the specified workflow to support conditional 
behaviour. The activity consists of an ordered list of conditional branches that are 
considered in the order in which they appear. The conditional branches are defined by 
the <CASE> elements. 

• CASE: Each <CASE> element specifies a set of actions to be performed, in the case 
when a condition meets. One or more XML attributes of the <CASE> element define 
the specific condition(s). As an example, subsequent to an Embedded Processing 
Component execution, depending on the diverse possible results of that execution, 
different operational activities should take place. At least one such element must be 
located inside a CASE section. When multiple conditions must be met in order for the 
specified group of actions to be instantiated, the AND and OR XML elements are used, 
depicting AND and OR relationships respectively.  

• WHILE: This element enables the multiple executions of the enclosed parts of a 
workflow, according to the validity of certain conditions. At least one condition must 
be located inside a WHILE section. When multiple conditions must be met, the AND 
and OR XML elements are used, depicting AND and OR relationships respectively. 
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• TERMINATE: The <TERMINATE> element causes an operation to stop its execution. 

Concerning the invocation of back-end Embedded Components, the <INVOKE> DTWSL 
element is considered. It encloses the specification of an operation, including the following 
XML attributes: 

• embedded_component: it specifies the Embedded Component that will be 
executed. 

• source_data_type: when the invocation concerns the transformation of a 
personal data type to another, the value of this attribute corresponds to the “source” 
personal data type, that is, the type that will be transformed. It should be mentioned 
that the source_data_type attribute points to an array of data, as it is common 
that the execution of an Embedded Processing Component will frequently accept as 
input sets of data, rather than single instances of data, as e.g., in cases of aggregation. 
In the case of referring to a single data instance, obviously the array of data, 
accounting as input, will consist of a single data record. In the case of Embedded 
Processing Components receiving different kinds of data types as input, multiple 
source_data_type attributes will be used. 

• target_data_type: when the invocation concerns the transformation of a 
personal data type to another, the value of this attribute corresponds to the “target” 
personal data type, that is, the type that will result from the transformation. It should 
be mentioned that the target_data_type attribute points to an array of data, as it 
is common that the execution of an Embedded Processing Component will return with 
an output of sets of data, rather than single instances of data. In the case of resulting in 
a single data instance, obviously the array of data, accounting as output, will consist of 
a single data record. Regarding the case of Embedded Processing Components 
returning with different kinds of data types, multiple target_data_type attributes 
are acceptable. 

Regarding the manipulation of the Embedded Components and the relative data sets, the 
DTWSL defines the following elements: 

• DISCLOSE: it declares that the data of some specified types should be disclosed to the 
entity that has asked to retrieve them. 

• REJECT: the request is rejected. This element is mostly part of the dynamic portion of 
the workflow specification, when more explicit conditions should be verified, thus 
such an attribute should be designed depicting potential negative authorization. 

As it is has been mentioned, it is common that the Embedded Processing Components of the 
back-end work simultaneously with diverse sets of data types, rather than with explicit data 
types. Hence, the need for an expression regarding retrieval of classified data types emerges, 
for the facilitation of the manipulation of those distinct data types. Moreover, regarding the 
cases of Embedded Processing Components working with single data instances among a series 
of data of a single type, the requirement for a serial data extraction expression should be 
satisfied. In that respect, the retrieve_data_type_from and get_next_element 
expressions are introduced: 

• retrieve_data_type_from: it depicts the retrieval of the specified data type 
set, among an array of diverse data type sets. It includes the following XML elements: 
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o data_type: it specifies the required data type to be retrieved from a set of 
different data types. This attribute can point, as it has been analysed, to an 
array of data of the same type.  

o from_set: it denotes the set of data types in which the acquired data type is 
to be found and retrieved. 

• get_next_element: it serves for the representation of the extraction of distinct 
data instances from an array of different data instances of the same type. It specifies 
the next element to be extracted, following a serial logic, or gets the value NULL when 
no more elements can be retrieved. In this context, the get_next_element 
expression is embracing a data_type XML attribute, which denotes the source set 
of data, under evaluation.  

 
Figure 12 presents an example of a CertPDT certificate including a DTWSL workflow 
specification. It corresponds to the to the situation in which an actor falling into the role of 
NetworkAdministrator requests for the execution of the service 
ISPProviderClassInfoProvision, which provides a list of all different Internet 
Service Providers that can be recognised in the packet traces under evaluation, taking into 
consideration the different IP Address Classes they belong to. The Embedded Processing 
Components to be used are the IPv4AddressHandler, which is used to extract the first octet 
from the whole IPv4 address, the IPv4AddressClassChecker, which takes as input the first 
octet of an IPv4 address and checks its first bits to determine the corresponding IP address 
class, the IPv4AddressToISPMapper, which is called to map a specific IPv4 address to an 
explicit ISP name and finally the DataAggregationHandler, which aggregates the results in 
their final form. 
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Figure 12: DTWSL workflow example encapsulated into CertPDT Certificate 

Certificate: 
  Data: 
 
    Version: 2 
    Serial Number: 1234266363562 
    Signature Algorithm: SHA512withRSA 
    Issuer: CN=PPC 
    Holder: PRISM 
    Validity: 
      Not Before: Tue Feb 17 16:23:40 EET 2009 
      Not After: Tue Dec 19 16:47:00 EET 2009 
     Subject Public Key Info: 
           Public Key Algorithm: rsaEncryption 
           RSA Public Key: (512 bit) 
               Modulus (512 bit): 
   1e1a91078b1eddea1989134badc9c89c2207819d7a9 
   67874c73354667fcbe57598b34d6771b2108559762a 
   9138c784f7488a605f92c53454afae8475063c707d 
    Attribute: { 
                  {type: Role,      value: NetworkAdministrator} 
                  {type: Service,   value: ISPProviderClassInfoProvision} 
                  {type: Workflow,  value: 

<WORKFLOW> 
           <INVOKE embedded_component=”IPv4AddressHandler”      

source_data_type=”IPv4SourceAddress” 
target_data_type=”IPv4SourceAddress1stOctet”/> 

           <INVOKE embedded_component=”IPv4AddressClassChecker” 
source_data_type=”IPv4SourceAddress1stOctet” 
target_data_type=”IPv4AddressClass”/> 

              <SWITCH> 
    <WHILE get_next_element (from=”IPv4AddressClass”) != NULL> 
                <CASE data-type=”ClassA”> 
   <INVOKE embedded_component=”IPv4AddressToISPMapper”  
     source_data_type=”IPv4SourceAddress”    
      target_data_type=”ClassAISPName”/> 

<INVOKE embedded_component=”DataAggregationHandler”/> 
     source_data_type=”ClassAISPName”    
     target_data_type=”ClassAISPNameList”/> 
       <DISCLOSE/> 
                </CASE>    
        <CASE data-type=”ClassB”> 
                 ....... 
           </CASE> 
           <CASE data-type=”ClassC”> 
                 ....... 
           </CASE> 
           <CASE data-type=”ClassD”> 
                 ....... 
            </CASE> 
    </WHILE> 
              </SWITCH> 

</WORKFLOW> 
} 

     } 

    Extensions: 
      X509v2AttCert Basic Constraints: 
        CA: FALSE 
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5 Partitioning monitoring applications within the PRISM 
Architecture 

PRISM’s architecture presents many possibilities for privacy-preserving network monitoring. 
For simplicity, maintainability, privacy protection, and performance reasons, newly-developed 
monitoring applications using PRISM should be designed as partitioned into front-end, back-
end, and presentation components. For the adaptation of existing monitoring applications, the 
focus instead is to minimise the effort needed to bring the application into a privacy-
preserving environment. Wherever applicable, the preferred approach is to send the 
application its input data (usually packet or flow traffic data) in its native format. This traffic 
is reduced and modified at the front-end to eliminate privacy sensitive information in the data 
sent to the external application. A second approach is to place the whole application within the 
front-end, using the application itself to do data reduction and using the back-end to control 
access to the results, which themselves may still contain some privacy-sensitive information. 
The third approach is a full partition of the application into front-end, back-end and external 
parts, as with newly-designed PRISM applications. The most applicable approach depends on 
the particular monitoring application and the monitoring purpose. In the following subsections 
we will discuss different monitoring purposes and show examples of how to satisfy the 
purpose in a privacy-preserving way within the PRISM architecture. 
 

5.1 IDS scenarios 
Intrusion detection systems (IDS) monitor and analyse network traffic in order to detect 
ongoing attacks directed towards the end-systems or the network infrastructure itself. IDS are 
usually defined according to three relevant characteristics: 

1. Location 
a. Host-based intrusion detection systems (HIDS) are deployed directly on the 

devices they are supposed to protect.  The advantage of host-based systems lies 
mainly in their great adaptability to the devices (i.e., operating system and 
applications) they are supposed to protect. 

b. Network-based intrusion detection systems (NIDS) run directly on the 
network infrastructure which is to be monitored for attacks, and they offer the 
advantage of early interception of attack patterns, thus opening the way to 
network resource preservation and efficient mitigation of large-scale attacks. 

2. Detection strategy 
a. Signature detection essentially relies on the comparison of the observed 

traffic flows with a database of known attacks. Whenever such a system detects 
a traffic signature matching that of a known attack, it raises a corresponding 
alarm. A major drawback of such systems is that they are not able to react to 
novel types of attacks not yet included into the signature database. 

b. Anomaly detection systems learn the normal behaviour of a network and raise 
the alarm whenever the network displays anomalous and thus potentially 
dangerous traffic patterns. Although anomaly detection offers the possibility of 
detecting previously unknown attack patterns, it unfortunately also raises the 
probability of triggering false alarms, especially if naïve policies are 
implemented. 

3. Reaction 
a. Passive systems are used for the detection of attacks and anomalies, but they 

do not offer the possibility of automatic intervention, i.e., threat mitigation. 
Instead, they rely on the human component for appropriate reactions. 
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b. Reactive systems offer the possibility of automatic attack mitigation or even 
prevention, without requiring any human intervention. Such systems are 
usually referred to as Intrusion Prevention Systems (IPS), and for seamless 
network operation they must be tuned such that the number of false alerts is 
minimised to the extent possible.  

 
In this context as far as the PRISM system is concerned, passive NIDS of either the signature- 
or anomaly-detection type are the most relevant. In the following sections, we will describe 
two different approaches towards intrusion detection and intrusion prevention within the 
PRISM system, which serve as examples for a plethora of concepts which can be realised 
within the given architecture (cf. [D2.2.1]).  

5.1.1 IDS in the front-end 
One of the fundamental prerequisites of meaningful IDS/IPS operation lies in having access to 
the full scope of the traffic transmitted via the observed links. Therefore, it would be very 
difficult to deploy an NIDS in the back-end of the PRISM system, as this would require the 
transportation of the complete data stream from the FE to the BE, which would of course be 
tightly coupled to enormous bandwidth requirements between the FE and the BE, and to 
exceptionally high requirements upon the storage component of the BE. 
 
Due to these constraints, the most reasonable option for deploying a general purpose NIDS 
within the PRISM system is to partition the corresponding traffic analysis in the following 
way: 

• The traffic inspection component of the NIDS should become part of the FE. In 
this way, the full scope of the traffic will be available to the NIDS, without the 
requirements to transport huge amounts of data among distributed architectures. In this 
context, it is important to mention that we do not necessarily see the NIDS as part of a 
highly specialised type of device in the FE (e.g., the network processor card), but that 
we could rather imagine a separate piece of hardware with full access to the traffic 
stream implementing the PRISM front-end interfaces. It should also be noted that, 
given the popularity of NIDS applications, particularly signature-based NIDS, and a 
widespread desire among network operators to deploy these systems at high traffic 
rates that much work in industry is going in to specialised NIDS observation hardware. 

• NIDS reporting should be accessible via the BE. In practically all cases (considering 
full traffic rates of up to 1 Gb/s) it should be possible to transport the NIDS alarm 
reports in real time between the FE and the BE. This architectural choice enables a 
single standard specification of NIDS rules in the FE, and the subsequent role-based 
access differentiation of the types of information accessible to different types of users. 
As an example, the network operator will normally have access granted to all the 
alarms occurring in the network, while individual users of the same operator’s network 
might obtain only a subset of this information from the PRISM system which is 
relevant for their own operation (e.g., only information about attacks which are 
directed towards their own IP address space). 

 
In the next section, we present a specific example for an NIDS targeted towards Session 
Initiation Protocol (SIP) signalling attacks, which employs a somewhat more advanced 
splitting of roles by applying a higher amount traffic pre-processing in the FE (essentially 
based on timers and bloom-filter based counters), which is especially important for identifying 
attacks in the context of highly stateful networking protocols. 
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5.1.2 Recognising SIP flood messages 
 
In order to illustrate IDS within PRISM architecture, let us next consider a new monitoring 
application for detecting so-called SPAM over the Internet Telephony (SPIT). The term SPIT 
refers to activities where unsolicited, typically automated, calls are made to a large number of 
victims with some aim such as marketing, disturbing, etc. As VoIP becomes increasingly 
popular, we expect that SPIT attacks will become more common. One SPIT attack was carried 
out recently in Germany [Heise08,IPcom08], where numerous SIP INVITE packets 
[RFC3261] were send to random IP addresses. As a result, a potentially a large number of 
(badly implemented) VoIP phones started to ring in the middle of the night. The attack did not 
include any actual voice communication, but was limited to the call establishment phase. In 
particular, the attack consisted of a single packet sent to each targeted host. 
 
The good news is that this type of attacks is relatively easy to identify at the core or access 
network level, where one can monitor traffic between several hosts. To this end, let us first 
consider how such an attack can be identified. We give three complementary approaches here: 
 
Anomaly detection approaches: 

• The attack is most likely targeted only to the de facto standard port, 5060 (TCP/UDP). 
Hence, a single IP address sending too many INVITE messages with this port over a 
relatively short time interval (especially in the middle of the night!) strongly suggests 
malicious behaviour. For example, a frequency of 30 INVITE messages or more per 
minute should not occur normally. However, a potential problem is that VoIP 
gateways / proxies may generate a large number of valid INVITE messages. This can 
be mitigated by using a whitelist of known gateways. We note also that such an attack 
may be distributed, with more than one host participating in the attack. 

• An attacker choosing the target addresses randomly frequently hits both i) non-existing 
IP addresses, and ii) hosts where VoIP is not in use (or to be precise, where there is no 
server listening on port 5060). Hence, either there is no reply at all, or a TCP RESET 
or ICMP “destination unreachable” response is sent back to the originating host. Thus, 
measuring the rate of single packet flows with no response, or the rate of TCP RESET 
/ ICMP “destination unreachable” packets, reveals the attacker. 

 
Honeypot-based approach: 

• Thirdly, one can use honeypots distributed among real users. Packets sent to such 
hosts are generally unsolicited and correspond to some sort of malicious activity. In 
this case, packets sent to port 5060 are very likely to be a VoIP related scan or even 
attack. 

 
From the above, it is clear that all approaches boil down to measuring rate of a certain type of 
event per host, i.e., counting. Note that when one analyses a system with random arrival points 
in time, the quantity of the rate can be defined in various ways. In our case, it is convenient to 
consider discrete time with time bins in the order of 1 minute. Consequently, the rate 
corresponds to a sequence of non-negative numbers. 
 

5.1.2.1 Deployment within the PRISM system 
The partitioning of duties in this case among components of the PRISM architecture is rather 
straightforward. Let us first consider the front-end: 
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1. Measurement: The FE’s first task is to count the number of events per host, where an 
event can, e.g., refer to 
 

i.  Packets with INVITE keyword, 
ii.  Number of single packet flows with a) no response during, e.g., 1 minute, or 

b) a response indicating an error (e.g., TCP RESET). 
 
In both cases, one can limit the operation to port 5060. Depending on the expected 

maximum number of events and the computational capabilities available, the counting 
per source IP address can be carried out either exactly or by using Bloom filters. The 
rate corresponds to the number of packets that arrived during the time-bin divided by 
the length of time interval. 
 

2. Notification: Upon exceeding a given threshold the FE will notify the BE about this 
event. In order to avoid multiple notifications during a single time slot, the FE can use 
another Bloom filter to record the notified addresses. Alternatively, a single counter 
saturating, e.g., at k+1 is also sufficient, so that reaching a value of k triggers the 
sending of a notification. In either case, the data structures such as Bloom filters are 
reset at the end of each time interval. 
 
In a simple solution, the FE reveals the suspicious IP address directly to the BE, who 
can then, e.g., carry out further analysis including counting the number of 
(consecutive) time slots during which the threshold is exceeded. 
 
Alternatively, in order to protect privacy, one can use the secret-sharing escrow 
mechanism as described in [BIA08]. That is, in response to exceeding a given 
threshold during a single time bin, the FE reveals only a part of the suspicious IP 
address by using Shamir's secret sharing scheme. This makes sure that the BE does not 
know anything about the IP address until a sufficient number of shares (where the 
number is a design parameter) has been delivered to it. In other words, this process 
corresponds to counting the number of time bins during which the threshold has been 
exceeded. 
 
Resetting: When applying Shamir's scheme, it is important to reset the secret (i.e., the 
Shamir's polynomial) on a regular basis, like e.g., once every k time slots. This avoids 
the effects of infinite system memory. Otherwise, all traffic would eventually be 
interpreted as attack traffic. 
 

The counting functionality of events per IP address necessitates stateful operation at the FE. 
The straightforward implementation of counting events per IP address wastes a lot of memory 
(e.g., 4 bits per 32-bit IP address translates to 2GB of memory). The application of a dynamic 
structure accessed through a hash function can mitigate this issue; this is an especially viable 
option when the analysis is run on sufficiently powerful PC-level hardware. If the resources 
are particularly sparse when compared to the amount of data, then counting Bloom filters can 
be used. Hence, stateful operation is unlikely to be a real problem here. We note that instead 
of revealing the suspicious IP addresses, basically the same scheme can be used to reveal also 
(some of) the suspicious flows (cf. [BIA08]) in order to facilitate manual inspection 
afterwards. A more elegant general solution to this class of problem, where the rate threshold 
is controlled in a leaking bucket fashion, is described in section 3.3.2.3. 
 
The operation at the BE is similarly straightforward. Its main task is to listen for notifications, 
and as they arrive, disclose the suspicious IP addresses. The suspicious IP addresses may then 
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be reported to an external entity for potential countermeasures. Finally, we note that the 
described operation can be also implemented in distributed fashion with several FE 
components without changing the fundamental logic in FE or BE. 
 

5.1.2.2 Summary of the Requirements from the PRISM system 
The described application requires from the FE the following functionalities: 
 

 Flow key filtering, the ability to inspect only traffic meeting certain criteria (e.g., ports 
and protocols). 

 Optional substring search to identify keywords within the observed protocol. 
 Counting a number of events, where the range depends on the expected rate of events 

in the nominal case. 
This application has no special requirements on the back-end. 
 

5.2 Billing non-repudiation 
A concrete example in which network measurement systems can offer unique value to the 
operators is the non-repudiation of data volumes attributable to each individual customer, as 
with the availability of the recorded data streams the operator can easily demonstrate the exact 
volumes of traffic generated by each user. Technically, in the case of mobile operators, this 
can be performed based upon the International Mobile Subscriber Identity (IMSI) of the users 
extracted from stored traffic traces. However, such identifiers are extremely sensitive and 
should be considered confidential information, which must not be exposed unless mandated 
by the situation. For volume-based billing models at least the IMSI number, the packet-size, 
and the timestamp are recorded for each packet. Nevertheless often more information is stored 
(e.g. IP addresses) in order to have more details during a billing repudiation or abuse 
investigation. Furthermore, access to this information for employees of the provider is not 
strictly limited to billing purposes or billing repudiation. 
 

5.2.1 Deployment within the PRISM system 
The PRISM architecture can be applied to this problem, by collecting traffic information and 
protecting sensitive identifiers such as the IMSI at the front-end. The front-end filters the 
traffic per IMSI and forwards two independent information flows to the back-end. The first 
information flow is meant for billing purposes, and consists of hashed (i.e., anonymised) IMSI 
and the number of total bytes sent to the back-end. The back-end has a mapping between 
customers and hashed IMSIs, which can be used for billing the traffic volume. For non-
repudiation purposes flow level information is collected at the front-end. The IMSI is hashed 
with different hash function than the one used for billing. The information sent to the back-
end consists of time, source and destination IP addresses, and the total number of bytes. If a 
repudiation process is launched by a specific customer, she must disclose her IMSI. With her 
IMSI, the flow level information can be extracted from the back-end. Without the IMSI of the 
user, it is not possible for a provider employee to get flow-level information for a specific 
customer; only the billing information can be gathered. The separation of the information 
using two different hash functions consequently allows a provider to perform billing without 
detailed flow-level information. Only in case of repudiation is the flow level information read 
and handed over to the customer. The information that a provider can offer the customer in 
case of repudiation is flexible, and consequently the information gathered in the front-end and 
sent to the back-end my vary in its level of detail, as, e.g., flow-level volume information 
might suffice completely as opposed to packet-level volume information. 
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5.2.2 Summary of Requirements from the PRSIM system 
The following processing steps are performed in the front-end: 

1. Counting bytes per IP address for an interval 
2. Flow aggregation, the creation of flow records with timestamps and counters per 5-

tuple. 
3. Application of multiple hash functions for different purposes data derived from the 

same source 
Functions in the back-end: 

1. Map hash(IMSI) to the customer identifier 
 

5.3 Application Detection 
Application detection is of great interest for network providers. Detecting P2P traffic is only 
the best-known motivation of many for application detection. Application detection using 
passive monitoring techniques is based on traffic classification. Traffic classification is also 
used for traffic engineering purposes: optimizing link usage, planning new network 
architectures, and introducing new mechanisms (e.g. QoS) for traffic engineering. Based on 
the commonly-used approaches, traffic classification can be divided into three different 
classes: 

1. Port-based: 
 Port-based traffic classification is fast and simple. The more traffic is from 

applications using well-known port numbers the higher the accuracy of this algorithm 
is. However, applications which have an interest in circumventing traffic classification 
efforts or firewall protections often misuse well-known port numbers; in addition, P2P 
applications generally do not have well-known port numbers assigned and use multiple 
ports as an integral part of the protocol. Consequently port-based traffic classification 
may perform poorly, e.g. less than 70% accuracy [MOR05], especially for those 
applications most interesting to classify. 

2. Statistical: 
 Statistical traffic classification [CRO07] detects applications based on identifying 

statistical properties of the captured IP packets. Traffic can be classified based on 
packet size, inter-arrival time, or arrival order.  

3. Deep packet inspection: 
 Traffic classification based on deep packet inspection (DPI) produces extremely 

accurate classification. The classification is based on the detection of pre-defined 
unique payload signatures.  

 
In the following sections we describe how two different monitoring applications can be 
adapted to operate in a privacy-preserving environment. The focus is to use the application as 
it is and to reduce and modify the input traffic such that no privacy-relevant information is 
given to the application.  
 

5.3.1 Detecting P2P traffic by using Appmon 
Appmon is a traffic classification application that uses deep packet inspection to determine the 
application for each traffic flow present in an observed network. This scenario focuses on 
using Appmon to detect P2P traffic. However, since it is based on DPI, it has access to full 
payload information of every observed packet, and therefore clearly compromises the privacy 
of the end-users of the network. This scenario addresses this problem using the PRISM 
architecture. 
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5.3.1.1 Deployment within the PRISM system 
Appmon used together with the PRISM system can detect the applications without 
compromising user privacy as follows: 
  
The PRISM front-end captures and classifies packets based on port numbers. According to 
[KIM08] the accuracy of per-port traffic classification strongly depends on the port and 
degrades when an application uses ephemeral non-default ports or when default ports of an 
application coincide with port masquerading P2P applications. To identify traffic that does not 
use the well-known port numbers, or hides behind well known-port numbers, special 
algorithms within the front-end must be applied in order to improve the accuracy of the traffic 
classification. 
 
Therefore such traffic is sent to the back-end and classified with payload-based classification 
applications [ANT06]. The decision whether to forward traffic is based on two questions: 
 

• Is the port known to be used with port masquerading by P2P applications? 
• Is the amount of traffic decisive for the overall results (misclassifying e.g. 1% of the 

traffic can be neglected)? 
 
When a flow matches the above criteria the traffic is handed over to Appmon via the back-
end. To allow Appmon to operate on the data, at least the following information must persist 
from the original packet data: 
 

• 100 bytes of payload for detection based on protocol control messages 
• full payload (for example for passive FTP) 
• packet size 
• port numbers 
• involved hosts (IP addresses can be anonymised) 

 

5.3.1.2 Summary of requirements from the PRISM system 
Privacy preserving application detection using Appmon requires from the front-end the 
following functionalities: 

1. Flow key filtering, the ability to inspect only traffic meeting certain criteria (e.g., ports 
and protocols). 

2. Counting packets per port number for an interval. 
 
 
The back-end requires providing the following functionalities: 

1. Construction of a packet trace from information received from the front-end, 
obfuscated with random values. 

2. Replay of the constructed trace, as Appmon can only operate in “live” capture mode. 
 

5.3.2 TSTAT Skype detection engine in a privacy preserving environment 
Detection of Skype traffic is of interest for providers that offer a VoIP service, and much 
effort has gone into reliable detection of Skype traffic. TSTAT is a tool which implements a 
Skype traffic detection engine based on the algorithms described in [BON07]. This paper 
presents a comprehensive analysis of Skype traffic characteristics and identifies patterns that 
are typical for Skype traffic; this is not a trivial task given that all Skype traffic is encrypted. 
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Therefore, in order to identify Skype communications, the entire traffic stream on the network 
is analysed by the TSTAT; as with DPI approaches, this has a clearly negative impact on the 
privacy of the network’s end-users. This scenario combines TSTAT with PRISM to mitigate 
this. 
 

5.3.2.1 Deployment within the PRISM system 
PRISM used together with TSTAT can successfully detect Skype traffic and ensure user 
privacy. In this case, TSTAT is used as external monitoring application; however, in contrast 
with its normal operation, it does not observe all of the traffic on the network. Here, the traffic 
is filtered, reduced and modified in the front-end. For filtering traffic a subset of the 
algorithms described in [BON07] are implemented in the front-end. The front-end only 
forwards network traffic that is encrypted, and has Skype-like characteristics and is thus likely 
Skype traffic. Based on the aspect that only packets that are encrypted on the network are 
forwarded to TSTAT and privacy sensitive information from the headers is deleted, no 
privacy sensitive information exists in the information given to TSTAT by the back-end. To 
pre-filter Skype-suspicious traffic the decision in the front-end can be based on some 
characteristics described in [BON07]: 
 

• Average packet rate between 10 and 100pkt/sec 
• Flow duration is longer than a given threshold (10s) 
• For Skype VoIP flows: Average packet size is small (between 30 byte and 300 byte) 
• For Skype out traffic: Port 12340 is used and first 4 bytes of UDP payload match a 

given signature; remaining bytes have Shannon entropy higher than a given threshold. 
• Byte 1 and 2 and bit 4-8 of the 3rd byte of the UDP payload match a given signature; 

remaining bytes have Shannon entropy higher than a given threshold. 
• TCP payload bytes have Shannon entropy higher than a given threshold. 

 
The portion of the packet handed over to the back-end depends on the information used by 
TSTAT to identify Skype traffic. At least the following characteristics must remain present in 
the modified trace. 

• Skype encrypted payload 
• inter-packet time (relative packet arrival time) 
• packet-size 
• protocol and port numbers 
• involved hosts (note that IP addresses should be anonymised but must remain unique) 

 
Note that proprietary protocols such as the one used by Skype can change at any point in time; 
this detector is thought to work at the time of writing, but this may change without warning. 
 
 

5.3.2.2 Summary of Requirements from the PRISM system 
From the front-end the following functions are required: 

1. Flow aggregation, the creation of flow records with timestamps and counters per 5-
tuple. 

2. Flow rate, duration, and packet size measurement. 
3. Shannon entropy calculation on packets within a flow. 
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For the back-end must provide adaptation to a system requiring live trace information as 
above. 
 

5.4 Summary of Requirements from the PRISM system 
Network traces are of great interest within the network research community. Almost all 
research areas use network traces, or could benefit from using them; examples include the 
development of new routing schemes or protocols, the improvement of queuing algorithms, 
the detection of new applications, and so on. However, currently only a few traces are 
available to the research community. Raw, unobfuscated trace data is often used within the 
organizations that collect it, but cannot be shared to provide a basis for the “science” of 
network research, as experiments on undisclosed data cannot be repeated, and there can often 
be uncertainty as to whether the experiment’s results are data-dependent. On the other hand 
there are well-known, publicly available traces where all privacy-sensitive information has 
been deleted, though this often has the consequence that the traces cannot be used for a wide 
range of research purposes. Recent trends in attacks against network data anonymisation have 
also led to the threat of the reduced availability of even this inadequate research data source. 
PRISM can offer trace files for different purposes, two examples are shown in the following 
subsections. The content of the trace files is strictly limited to the information needed for a 
specific purpose. 

5.4.1 Publicly available Traces for Traffic Classification 
The development of new algorithms for traffic classification is ongoing. Due to the lack of 
publicly available traces, the evaluation of the new algorithms is mostly done on self-collected 
traces. Consequently, the comparison of different algorithms is difficult and often not even 
carried out at all [KIM08]. Papers like [KIM08] compare different existing algorithms based 
on their own private traces. If a new algorithm is developed it will not be possible to compare 
it to their results, because the traces are not publicly available. Consequently, only a few 
existing algorithms can be compared in a proper way. As argued in [CRO07], a solution to 
allow traffic classification on anonymised traces would be to add meta-data to the traces (e.g., 
the application behind a flow found by deep packet inspection). Such traces ensure user 
privacy and allow for research on traffic classification. 

5.4.1.1 Deployment within the PRISM system 
PRISM allows the publication of traces to the research community, where end-user privacy is 
protected and sufficient information remains in the traces to allow useful research. For 
privacy-preserving trace publication all privacy sensitive information must be deleted or 
anonymised. As shown in [D2.1.1], IP addresses must be considered personal data, so IP 
address information must be anonymised. In full traces the real IP addresses are generally not 
crucial to the research at hand, so as long as host uniqueness and/or network structure are 
preserved, anonymisation has no negative impact on trace utility. Packet payload must also be 
protected, as many users are not using encrypted connections.  
 
In this scenario, the PRISM front-end collects packets, does short-term analysis on the 
received packets for e.g. classification, and generates meta-data of the results. For long-term 
analysis and storage, the packets are sent to the back-end. The trace-file generated by the 
back-end is handed over to the researchers, together with the meta-data. For the purpose of 
trace publication for traffic classification in the front-end an application detection engine 
based on payload inspection is performed [KIM08]. The result of this classification is called 
the metainformation of the packet. IP addresses within the packet are anonymised, and the 
payload is deleted. The remaining part of the packet together with the metainformation is sent 
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to the back-end and stored. Packets that cannot be identified by short-term analysis in the 
front-end are sent to the back-end to be further analysed. The results of the back-end analysis 
(metainformation) are stored together with anonymised packet information. Based on a 
request from a researcher, the back-end generates a trace-file which together with the 
metainformation is handed over to the research community.   
 
Since multiple different anonymisations of the same data set can be used to regenerate the 
original data, the PRISM back-end must keep a log of which data was anonymised and how, 
and to whom the data was given. This logging serves to warn the network operator of the 
danger of de-anonymisation and to deny publication in case of such danger. 
 

5.4.1.2 Summary of Requirements from the PRISM system 
To enable privacy preserving publication of routing traffic the front-end provides the 
following: 

1. String search functions to detect the application 
2. Deletion of packet payload and other individual fields 
3. Anonymisation of IP addresses  

 
The back-end must provide the following: 

1. Construction of a packet trace from information received from the front-end and 
back-end analysis results 

2. Additional traffic classification analysis functions. 
 

5.4.2 Publicly Available Traces with Routing Traffic 
Other network traffic besides packets containing privacy-sensitive data could be of interest for 
researchers. Examples for the specific purpose of routing research are routing protocols, Cisco 
Discovery Protocol (CDP), or spanning tree information. Traces containing control plane 
information are of great interest to the research community in the analysis of the behaviour of 
Internet routing protocols in real world environments.  
 
Such trace files are useful to evaluate the behaviour of routing protocols in real environments, 
improve routing protocols or test new routing protocols. In an example we focus on a wireless 
community network, where mesh routing protocols are used and traces may be handed over to 
the research community for developing and analysing routing protocols. 
 

5.4.2.1 Deployment within the PRISM system 
To analyse routing, the front-end filters traffic such that only packets with routing information 
in it will match. The IP addresses are anonymised such that the network from which the traces 
were generated cannot be identified. Further header fields that are unnecessary for the purpose 
are removed or anonymised. This packet stream is handed over to the back-end and stored 
there. A researcher may query the relevant data from the PRISM back-end, with the back-end 
verifying that the given operator had the necessary privileges for publication and the 
researcher has the privileges to receive traces. A packet trace with the information in the 
database together with random fields is generated and forwarded to the application. 
 
Again, as above, multiple different anonymisations of the same data set can be used to 
regenerate the original data. Therefore, the PRISM back-end must keep a log of which data 
was anonymised and how, and to whom the data was given. This logging serves to warn the 
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network operator of the danger of de-anonymisation and to deny publication in case of such 
danger 
 

5.4.2.2 Summary of Requirements from the PRISM system 
To enable privacy preserving publication of routing traffic the front-end provides the 
following functionalities: 

1. String search functions to detect routing traffic, 
2. Function to delete individual fields of a packet. 

The back-end must then provide the following functionalities: 
1. Construction of a packet trace from information received from the front-end, 

obfuscated with random values. 
2. Audit logging for tracking publication details. 
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6 Conclusions and outlook 
The PRISM system aims at preserving the users' privacy at the same time when various traffic 
monitoring activities, essential, e.g., for the network maintenance and planning, are carried 
out. To this end, the fundamental new approach introduced by PRISM takes the monitoring 
application and the user role into account for access control and requires the specification of a 
monitoring purpose for which the data is collected and processed. The work presented in this 
deliverable demonstrates some concrete examples of how monitoring applications can be used 
and integrated within the PRISM architecture for dedicated monitoring purposes. It 
furthermore provides insights into the detailed mechanisms provided for front-end processing 
and selected back-end components, which allow a very flexible usage for the different kinds 
of monitoring applications. 
 
The aim of this work is to leave any integrated monitoring application itself untouched, to the 
extent possible; we have several motivations for this. The major one is, direct integration 
allows network operators and other entities to use applications they have already deployed, 
but made privacy-aware with the data protection concepts and approaches presented in D3.1.2 
by using PRISM as a “virtual observation point” which provides only appropriately protected 
data. This also allows us to take advantage of future releases of existing monitoring 
applications. 
 
The work carried out in the context of this deliverable will be the basis for the final 
deliverable of work package 3.2. In D3.2.3 the currently loosely coupled functional 
components based in the front-end, back-end, or in the external applications have to be 
connected in order to provide a complete solution for selected monitoring purposes as 
described in Section 5. D3.2.3 will also incorporate the anonymisation mechanisms and tools 
as elaborated by WP3.1. 
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